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From local to global relativity 
 

Tuomo Suntola, www.sci.fi/~suntola 
 

 
Newtonian physics is local by its nature. No local frame is in a special position in space. There are no 

overall limits to space or to physical quantities. Newtonian space is Euclidean until infinity, and velocities 
in space grow linearly as long as there is constant force acting on an object. Finiteness of physical 
quantities was observed for about 100 years ago – first as finiteness of velocities. 

The theory of relativity introduces a mathematical structure for the description of the finiteness of 
velocities by modifying the coordinate quantities, time and distance for making the velocity of light 
appear as the maximum velocity in space and an invariant for the observer. Like in Newtonian physics, no 
local frame, or inertial observer, is in a special position in space. Friedman-Lemaître-Robertson-Walker 
(FLRW) metrics derived from the general theory of relativity predicts finiteness of space if a critical mass 
density in space is reached or exceeded. 

In the Dynamic Universe approach space is described as the three-dimensional surface of a four-
dimensional sphere. Finiteness of physical quantities in DU space comes from the finiteness of total 
energy in space — finiteness of velocities is a consequence of the zero-energy balance, which does not 
allow velocities higher than the velocity of space in the fourth dimension. The velocity of space in the 
fourth dimension is determined by the zero-energy balance of motion and gravitation of whole space and 
it serves as the reference for all velocities in space. Relativity in DU space means relativity of local to the 
whole — relativity is a measure of locally available share of the primary rest energy, the rest energy of 
the object in hypothetical homogeneous space. Atomic clocks in fast motion or in high gravitational field 
do not lose time because of slower flow of time but because part of their energy is bound into interactions 
in space. There is no space-time linkage in the Dynamic Universe; time is universal and the fourth 
dimension is metric by its nature. Local state of rest in DU space is the zero-momentum state in a local 
energy frame which is linked to hypothetical homogeneous space via a chain of nested energy frames. 

Predictions for local phenomena in DU space are essentially the same as the corresponding predictions 
given by special and general theories of relativity. At extremes, at cosmological distances and in the 
vicinity of local singularities differences in the predictions become meaningful. Reasons for the 
differences can be traced back to the differences in the basic assumptions and in the structures of the two 
approaches.  

1. Introduction 

In its basic approach modern physics relies on Galilean and Newtonian tradition of connecting 
observer, observation and a mathematical description of the observation. Orientation to observations 
required the definition of observer’s position and the state of rest. Newton’s great breakthrough was the 
equation of motion, which linked acceleration to the mass of the accelerated object and thus defined the 
concept of force. The linkage of force to acceleration allowed the definition of gravitation as a force 
resulting in the acceleration of a falling object which allowed a physical interpretation of Kepler’s laws of 
the motion of celestial bodies. 

Newtonian physics is local by its nature. No local frame is in a special position in space. There are no 
overall limits to space or to physical quantities. Newtonian space is Euclidean until infinity, time is 
absolute without start or end, and velocities grow linearly as long as there is a constant force acting on an 
object. Velocities in Newtonian space summed up linearly without limitations. 

The success of Newtonian physics led to a well-ordered mechanistic picture of physical reality. The 
nice Newtonian picture dominated until observations on the velocity of light in late 19th century when it 
turned out that the observer’s velocity did not add the velocity of light which looked like an upper limit to 
all velocities.  

In the theory of relativity the finiteness of velocities was solved by defining the coordinate quantities, 
time and distance, as functions of velocity and gravitational state so that the velocity of light appears as an 
invariant and the maximum velocity obtainable in space. In the framework of relativity theory, clocks in a 
high gravitational field and in fast motion conserve the local proper time but lose coordinate time related 
to time measured by a clock at rest in a zero gravitational field. 
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Like in Newtonian space, gravitation and motion in relativistic space are linked by equivalence 
principle equalizing inertial acceleration and gravitational acceleration. General appearance of relativistic 
space is derived assuming uniform distribution of mass at cosmological distances. Due to the local nature 
of the relativity theory, relativistic space conserves the gravitational energy and dimensions of local 
gravitational systems. The expansion of relativistic space occurs as “Hubble flow” in empty space 
between the local systems – probably speeded up by dark energy with gravitational push. 

The need for relativity theory came from the observed finiteness of velocities and the unique property 
of the velocity of light as being insensitive to the velocity of the observer. The solution of modifying time 
and distance limit velocities in the spirit of relativity principle, but it does not account for the physical 
basis of such limitation. In specific areas of physics like in thermodynamics and quantum mechanics the 
system studied is specified by boundary conditions, the total energy of the system and a possible energy 
exchange from and to the system. Energy has been generally accepted as a primary conservable in closed 
systems. 

 
Is there a way of studying whole space as a closed energy system and derive interactions and local 

limitations from the conservation of total energy in space? 
 
In his lectures on gravitation in early 1960’s Richard Feynman [1] stated: 
“If now we compare this number (total gravitational energy M

2G/R) to the total rest energy of the 
universe, Mc

2, lo and behold, we get the amazing result that GM
2/R = M c

2, so that the total energy of 
the universe is zero. — It is exciting to think that it costs nothing to create a new particle, since we can 
create it at the center of the universe where it will have a negative gravitational energy equal to Mc

2. — 
Why this should be so is one of the great mysteries—and therefore one of the important questions of 
physics. After all, what would be the use of studying physics if the mysteries were not the most important 
things to investigate”. 

 
and further [2] 
 
 “...One intriguing suggestion is that the universe has a structure analogous to that of a spherical 

surface. If we move in any direction on such a surface, we never meet a boundary or end, yet the surface 
is bounded and finite. It might be that our three-dimensional space is such a thing, a tridimensional 
surface of a four sphere. The arrangement and distribution of galaxies in the world that we see would 
then be something analogous to a distribution of spots on a spherical ball.”  

 
Once we adopt the idea of the fourth dimension with metric nature, Feynman’s findings open up the 

possibility of a dynamic balance of space: the rest energy of matter is the energy of motion mass in space 
possesses due to the motion of space in the direction of the radius of the 4-sphere. Such a motion is driven 
by the shrinkage force resulting from the gravitation of mass in the structure. Like in a spherical 
pendulum in the fourth dimension, contraction building up the motion towards the center is followed by 
expansion releasing the energy of motion gained in the contraction. 

The Dynamic Universe approach [3–9] is just a detailed analysis of combining Feynman’s “great 
mystery” of zero-energy space to the “intriguing suggestion of spherically closed space” by the dynamics 
of a four-sphere. The Dynamic Universe is a holistic model of physical reality starting from whole space 
as a spherically closed zero-energy system of motion and gravitation. Instead of extrapolating the 
cosmological appearance of space from locally defined field equations, locally observed phenomena are 
derived from the conservation of the zero-energy balance of motion and gravitation in whole space. The 
energy structure of space is described in terms of nested energy frames starting from hypothetical 
homogeneous space as the universal frame of reference and proceeding down to local frames in space. 
Time is decoupled from space – the fourth dimension has a geometrical meaning as the radius of the 
sphere closing the three-dimensional space.  

In the Dynamic Universe, finiteness comes from the finiteness of the total energy in space — 
finiteness of velocities in space is a consequence of the zero-energy balance, which does not 
allow velocities higher than the velocity of space in the fourth dimension. The velocity of space 
in the fourth dimension is determined by the zero-energy balance of motion and gravitation of 
whole space and it serves as the reference for all velocities in space.  
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The total energy is conserved in all interactions in space. Motion and gravitation in space reduce the 
energy available for internal processes within an object. Atomic clocks in fast motion or in high 
gravitational field in DU space do not lose time because of slower flow of time but because they use part 
of their total energy for kinetic energy and local gravitation in space.  

Relativity in Dynamic Universe does not need relativity principle, equivalence principle, Lorentz 
transformation, or postulation of the velocity of light. By equating the integrated gravitational energy in 
the spherical structure with the energy of motion created by momentum in the direction of the 4-radius we 
enter into zero-energy space with motion and gravitation in balance. Total energy of gravitation in 
spherically closed space is conserved in mass center buildup via local tilting of space which converts part 
of the gravitational interaction in the fourth dimension to gravitational interaction in a space direction and 
part of the velocity of space into velocity of free fall towards the local mass center created.  

Relativity in Dynamic Universe means relativity of local to whole. Local energy is related to the total 
energy in space. As consequences, local velocities become related to the velocity of space in the fourth 
dimension and local gravitation becomes related to the total gravitational energy in space. Expansion of 
space occurs in a zero-energy balance of motion and gravitation. Local gravitational systems expand in 
direct proportion to the expansion of whole space.  

The Dynamic Universe model allows a unified expression of energies and shows mass as wavelike 
substance for the expression of energies both in localized mass objects, in electromagnetic radiation, and 
Coulomb systems. The late 1800’s great mystery of the invariance of the velocity of light in moving 
frames disappears as soon as we observe the momentum of radiation, not only the velocity. The 
momentum of radiation caught to a moving frame is changed due to the Doppler shift of frequency, not 
due to a change in velocity as observed in the case of catching mass objects to a moving frame. Equal 
Doppler change of wavelength and cycle time in detected radiation conserves the phase velocity but at a 
changed momentum.  

2. Global approach to finiteness and relativity  

2.1 Space as spherically closed energy structure 
In the Dynamic Universe model a global approach to finiteness relies on the description of space as a 

closed energy system with potential energy and the energy of motion in balance. The structure closing the 
three dimensional space with minimum potential (gravitational) energy is the “surface” of a four 
dimensional sphere. Zero-energy balance in spherically closed space is obtained via interplay of the 
energies of motion and gravitation in the structure — in a contraction phase the energy of gravitation is 
converted into the energy of motion — in an expansion phase the energy of motion gained in the 
contraction is released back to the energy of gravitation, Fig. 2.1-1. In the contraction, space as a four-
dimensional sphere releases volume and gains velocity. In the expansion, space releases velocity and 
gains volume. 

Mathematically, the zero-energy dynamics of spherically closed space is expressed as 

   
2
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0

"
0rest tot global tot

GM
E E M c M

R      (2.1:1) 

where G is the  gravitational constant, M is the total mass in space, M" = 0.776M is the mass 
equivalence of the total mass (when concentrated into the center of the 4-sphere), R0 is the radius of the 4-
sphere, and c0 is the velocity of contraction or expansion 
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where  is the mass density in space. 
Based on observations of the Hubble constant, space in its present state is in the expansion phase with 

radius R0 equal to about 14 billion light years. By applying R0 = 14 billion light years and by setting the 
mass density equal to  = 5.010–27 [kg/m3], which is about half of the critical density 0 in the standard 
cosmology model, velocity c0 in (2.1:2) obtains the value c0  c = 300 000 [km/s]. 
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Figure 2.1-1. Energy buildup and release in spherical space. In the contraction phase, the velocity of motion increases due to the energy 

gained from release of gravitation. In the expansion phase, the velocity of motion gradually decreases, while the energy of motion gained in 
contraction is returned to gravity. 

The contraction and expansion of spherically closed space is the primary energy buildup 
process creating the rest energy of matter as the complementary counterpart to the global 
gravitational energy. 

For calculating the zero-energy balance in spherically closed space the inherent forms of the energies 
of gravitation and motion are defined as follows: 
 
1) The inherent gravitational energy is defined in homogeneous 3-dimensional space as Newtonian 

gravitational energy 

 
 

0g
V

dV r
E mG

r
    (2.1:3) 

where G is the gravitational constant,  is the density of mass, and r is the distance from mass m to 
volume differential dV. Total mass in homogeneous space is  

V

M dV V     (2.1:4) 

In spherically closed homogeneous 3-dimensional space the total mass is 2 3
02M R    , where R0 

is the radius of space in the fourth dimension.  
 

2) The inherent energy of motion is defined in environment at rest as the product of the velocity and 
momentum 

 
2

0mE v v m mv  p v  (2.1:5) 

The last form of the energy of motion in (2.1:5) has the form of the first formulation of kinetic 
energy, vis viva, “the living force” suggested by Gottfried Leibniz in late 1600’s [4].  

 
The contraction – expansion process of space is assumed to take place in environment at rest, the 

underlying 4-dimensional universe. Accordingly, mass at rest in hypothetical homogeneous space has the 
inherent energy of motion  

  0 00mE c p  (2.1:6) 
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Figure 2.1-2. Conservation of the total energy of motion and gravitation in free fall towards a local mass center in space. 

where c0 is the velocity of space in the direction of the 4-radius, the fourth dimension. Velocity c0 is 
conserved in all interactions in space. Locally, for the conservation of total gravitational energy, mass 
center buildup results in local tilting of space which converts momentum p0 into orthogonal components 
pIm( ) and pRe( )  

         0 0 0 0, Im Rem total rest ffE c c c        p p p p p  (2.1:7) 

which shows that the buildup of kinetic energy in free fall is achieved against reduction of the local rest 
energy 

     0 0 0 00kin ff rest restE c c m m c m c     p p c c  (2.1:8) 

where the local velocity of light, which is equal to the velocity of space in the local fourth dimension is 
denoted as c (c < c0), Fig. 2.1-2(b). The reduction of the global gravitational energy in tilted space is equal 
to the gravitational energy removed from the global spherical symmetry in homogeneous space 

     
0Im Im 1g gE E    (2.1:9) 

where  is denoted as the local gravitational factor ( =local gravitational energy/total gravitational energy) 

2
0 4 0 0

"
1 cos

GMGM GM
r R c r

      (2.1:10) 

where r0 is the distance of m from the local mass center M in the direction of non-tilted space. Tilting of 
local space in the vicinity of a local mass center means also reduction of the local velocity of light 

 0 0cos 1localc c c c      (2.1:11) 

which together with the increased distance along the dent in space is observed as the Shapiro delay and 
the deflection of light passing a mass center in space. In real space mass center buildup occurs in several 
steps leading to a system of nested gravitational frames, Fig. 2.1.-3.  

For each gravitational frame the surrounding space appears as apparent homogeneous space which 
serves as the closest reference to the global gravitational energy and the velocity of light in the local 
frame. Through the system of nested gravitational frames the local velocity of light is related to the 
velocity of light in hypothetical homogeneous space as 

0
1

cos
n

n
i

c c c 


   (2.1:12) 

The momentum of an object at rest in a gravitational state is the rest momentum in the direction of the 
local fourth dimension, the local imaginary direction.  
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Figure 2.1-3. Space in the vicinity of a local frame, as it would be without the mass center, is referred to as apparent homogeneous space to 

the local gravitational frame. Accumulation of mass into mass centers to form local gravitational frames occurs in several steps. Starting 
from hypothetical homogeneous space, the “first-order” gravitational frames, like M1 in the figure, have hypothetical homogeneous space as 
the apparent homogeneous space to the frame. In subsequent steps, smaller mass centers may be formed within the tilted space around in the 
“first order” frames. For those frames, like M2 in the figure, space in the M1 frame, as it would be without the mass center M2, serves as the 
apparent homogeneous space to frame M2. 

Buildup of motion in a fixed gravitational state requires insert of mass via momentum in a space 
direction. The total energy of an object in motion comprises the components of the momentum in the 
imaginary direction and a space direction 

      2 2
0 0 Im Re 0 0totm totE c c m c mc p c m m c       p c p  (2.1:13) 

and the corresponding kinetic energy 

  0restm totE E c m c     (2.1:14) 

A detailed analysis of the conservation of total energy of motion shows that the buildup of momentum 
in space reduces the rest momentum of the object in motion as 

   
2 2

0 0 00
1 1

1 1
n n

i irest n rest
i i

E E c m c c mc 
 

       (2.1:15) 

where m is the mass, the substance for the expression of energy, available for the object in motion at 
velocities i = vi/ci in the system of n nested frames, Fig. 2.1-4. Local velocity of space in the fourth 
dimension is not affected by the motion of an object. Accordingly, the square root term in (2.1:15) means 
a reduction of the rest mass of the moving object, which also means equal reduction in the global 
gravitational energy Eg,Im(n) of the moving object 

2
0

1

1
n

i
i

m m 


   (2.1:16) 

Combining the effects of motion and gravitation on the rest energy of an object in the n:th frame 
results  

      2
00

1

1 1
n

i irest n rest
i

E E c mc 


     (2.1:17) 

where c is the local velocity of light (2.1:12), which is a function of the gravitational state, and m is the 
locally available rest mass (2.1:16), which is a function of the motions of the object.  

 
Figure 2.1-4. Reduction of the imaginary momentum (rest momentum) due to motion in space in nested energy frames. (a) Mass m is at 

rest in homogeneous space. (b) Frame 1 is moving at velocity 1 = v1/c in homogeneous space; momentum pIm(0) is turned to the direction of 
total momentum with component pRe(1) in space (in the direction Re-axis). (c) Frame n is moving at velocity n = vn/c in frame 1; momentum 
pIm(1) is turned to the direction of total momentum with component pRe(2) in a space direction (in the direction Re-axis).  
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The energy of a quantum of radiation 

In the DU framework the energy of a quantum of radiation appears as the unit energy carried by a 
cycle of radiation [6] 

0
0 0 0

h
E c c c m c c  

   p  (2.1:18) 

where h0  h/c is referred to as intrinsic Planck constant which is solved from Maxwell’s equation, by 
observing that a point emitter in DU space which is moving at velocity c in the fourth dimension can be 
regarded as one-wavelength dipole in the fourth dimension. Such a solution shows also that the fine 
structure constant  is a purely numerical or geometrical factor without linkage to any physical constant. 
The quantity h0/  m  [kg] in (2.1:18) is referred to as the mass equivalence of radiation. 

Equally, Coulomb energy is expressed in form  
2

0 0
0 0 02 2C C

e h
E c c c c c m c

r r




 
    ; 0C CE c c m    (2.1:19) 

where  is the fine structure constant and the quantity h0/2 r  mC is the mass equivalence of Coulomb 
energy.  

Equations (2.1:17–19) give a unified expression of energies which is essential in a detailed energy 
inventory in the course of the expansion of space and in interactions within space. The zero-energy 
concept in the Dynamic Universe follows bookkeeper’s logic — the accounts for the energy of motion 
and potential energy are kept in balance throughout the expansion and within any local frame in space.  

The linkage between mass and wavelength or mass and wave number applies in both ways. The 
expression of mass in terms of the wavelength and wave number equivalences is 

0
0 m

m

h
m k


    (2.1:20) 

which allows the expression of the total energy of motion or the DU equivalence of the “energy four-
vector” in form 

2 2
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or  
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Fig. 2.1-5.  

 
Figure 2.1-5. Complex plane presentation of the energy four-vector in terms of mass waves given in equation (2.1:22). 
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2.2 Relativity as the measure of locally available energy 
Relativity in Dynamic Universe is observed as relativity of locally available rest energy to the rest 

energy the object has at rest in hypothetical homogeneous space. Relativity in Dynamic Universe is a 
direct consequence of the conservation of the total energy in interactions in space. It does not rely on 
relativity principle, spacetime, the equivalence principle, Lorentz covariance, or the invariance of the 
velocity of light — but just on the zero-energy balance of space.  

The linkage of local and global is a characteristic feature of the Dynamic Universe. There are no 
independent objects in space — all local objects are linked to the rest of space.  

The whole in the Dynamic Universe is not composed as the sum of elementary units — the 
multiplicity of elementary units is a result of diversification of the whole. 

The rest energy that mass m possesses in the n:th energy frame is  

 2 2
0 0 0 0

1

1 1
n

rest i i
i

E c c mc m c  


    p  (2.2:1) 

where c0 is the velocity of light in hypothetical homogeneous space, which is equal to the velocity of 
space in the direction of the 4-radius R0.  Momentum p in (2.2:1) is referred to as the rest momentum 
which appears in the local fourth dimension. The factors i = GMi/c

2 and i = vi/ci are the gravitational 
factor and the velocity factor relevant to the local frame, respectively. On the Earth, for example, the 
gravitational factors define the gravitational state of an object on the Earth, the gravitational state of the 
Earth in the solar frame, the gravitational state of the solar frame in the Milky Way frame, etc. The 
velocity factors related to an object on Earth comprise the rotational velocity of the Earth and the orbital 
velocities of each sub-frame in each one’s parent frame. 

An important message of equation (2.2:1) is that the effects of motion and gravitation on the rest 
energy of an object are different: motion at constant gravitational potential in a local frame releases part 
of the rest mass into the buildup of momentum in space – free fall in local gravitational field reduces the 
local rest momentum by reducing the velocity of space in the local fourth dimension via tilting of space. 

Also, the buildup of kinetic energy (see equations 2.1:8 and 2.1:14) is different in inertial acceleration 
and in gravitational acceleration. Kinetic energy can be generally expressed as 

 0 0kinE c c c m m c     p  (2.2:2) 

where the first term shows the insert of mass in inertial acceleration and the second term shows the 
reduction of the velocity in space in the local fourth dimension. The first term is essentially equal to the 
kinetic energy in special relativity, the second term does not have direct counterpart in relativity theory 
which equalizes the effects of gravitational acceleration and inertial acceleration by the equivalence 
principle. 

Equation (2.2:2) shows that the locally available rest energy is a function of the gravitational state, and 
the velocity of the object studied. Substituting (2.2:1) for the rest energy of electron in Balmer’s equation 
the characteristic frequency related to an energy transition in atoms obtains the form 

   2 2
0 1

1

1 1 1 1
n

local i i n n n
i

f f f   


       (2.2:3) 

where frequency fn–1 is the characteristic frequency of the atom at rest in apparent homogeneous space of 
the local the local frame. The last form of equation (2.2:3) is essentially equal to the expression of 
coordinate time frequency on Earth, or Earth satellite clocks in the GR framework. The physical message 
of (2.2:3) is that “the greater is the energy used for motions and gravitational interactions in space the 
less energy is left for running internal processes”.  

The Dynamic Universe links the energy of any localized object to the energy of whole space. 
Relativity in Dynamic Universe means relativity of local to the whole. At the cosmological scale an 
important consequence of the linkage between local space and whole space is that local gravitational 
systems grow in direct proportion to the expansion of space, thus, together with the spherical symmetry 
explaining the observed Euclidean appearance and surface brightnesses of galaxies in space. The 
magnitude versus redshift relation of a standard candle in the DU framework is in an accurate agreement 
with observations without assumptions of dark energy or any free parameter. Moreover, the zero-energy 
balance in the DU leads to stable orbits down to the critical radius in the vicinity of local singularities in 
space. 
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3. Comparison of local and global relativity 

3.1 Definitions and basic quantities 
Table 3.1-I gives a comparison of some fundamental quantities of relativity as described by special 

and general relativity and in the Dynamic Universe. The primary conservable in the DU framework is 
mass as wavelike substance for the expression of energy. Basic physical quantities are momentum and the 
energies of motion and gravitation, which are primarily defined in hypothetical homogeneous space. 
Force in the DU is a derived quantity as the negative of the gradient of energy. Electromagnetic energy is 
linked to mass via the mass equivalence of Coulomb energy and a cycle of radiation. 

 
 

 

 Local relativity (SR&GR) Global relativity (DU) 

1) What is primarily finite in 
space? 

Velocity Total energy 

2) Description of finiteness 
2

2

' 1

' 1

dt dt

dr dr





 

 
 2

0
0

"
0total

GM
E M c M

R     

 

3) The velocity of light 

 

constant by definitionc   

The velocity of light is determined 
by the velocity of space in the fourth 
dimension, and the local tilting of 
space 

 0 0
1 1

1 cos
n n

i i
i i

c c c 
 

     

3) Rest energy of mass m 

 v c   
2

restE mc   2 2
0 0

1

1 1
n

rest i i
i

E m c  


    

4) Kinetic energy 

 21 1 1m m        

0
0 0

GM
c c

r c


 
   
 

 

2
kinE mc    0 0kinE c c c m m c     p  

5) Planck constant  
2constant kgmh s     

Solved from Maxwell’s equations as 
the unit energy of a cycle of radiation 

 3 2
0 01.1049 2 kg m

h
h e

c
       

 

6) Quantum of radiation E h     
0

0 0 0 00 0

h
E c c kc c c m c 

    

m = mass equivalence of wave 

7) Fine structure constant  
2

02

e

h c



  

2
0

3
0

1

2 1.1049 2

e

h





 


 

Table 3.1-I. Comparison of basic definitions and derived quantities for the rest energy, kinetic energy, and the 
velocities and cycle times in the vicinity of a mass center in the SR & GR framework and in the Dynamic Universe.  
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Differences between the two approaches result from the basic choice: 
- In the framework of relativity theory finiteness in space is described in terms of modified coordinate 

quantities, which makes time and distance functions of velocity and the gravitational environment. 
The effect of gravitation relies on equivalence principle which links the acceleration in gravitational 
field to the inertial acceleration in the absence of gravitational field. Local rest energy is independent 
of the motion and gravitational environment of an objects. 

- In the framework of Dynamic Universe finiteness in space is described as finiteness of total energy, 
which makes the locally available rest energy a function of energy reserved by motion and 
gravitation in space – via the velocity and gravitational potential of the local frame in its parent 
frames. Time and distance are universal in the DU. 

 
In the SR&GR framework the velocity of light is constant by definition and the buildup of kinetic 

energy is described in terms of increase of effective mass – equally in the case of inertial acceleration in 
the absence of gravitational field and the case of free fall in gravitational field. 

In the DU framework the buildup of kinetic energy is different in the case of acceleration via mass 
insert at constant gravitational potential and in acceleration via free fall in gravitational field. The 
physical meaning of the mass insert is demonstrated by the concept of mass equivalence, e.g. acceleration 
of a charged mass object in Coulomb field releases Coulomb energy in terms of a reduction of the mass 
equivalence as shown in equation (2.1:19). In the case of free fall in local gravitational field the buildup 
of kinetic energy occurs via tilting of local space against reduction of the local rest energy via a reduction 
of the velocity of space in the local fourth dimension, Table 3.1-I(4). 

In the DU framework a point source of electromagnetic radiation can be studied as one-wavelength 
dipole in the fourth dimension. Solving the energy emitted by a dipole in an oscillation cycle results  

 

22 2 2 4 4
2 3 20 0 0

00

16
2

12

N e z f zP
E N A e c f

f cf

 
 

 
      
 

 (3.1:1) 

For a point source with a singe unit charge (z0=, N =1) the energy emitted in one cycle is the quantum  

   3 2
0 0 0 0 0 0 0 00 2E A e c f h c f k cc c m c hf            (3.1:2) 

where k is the wave number k = 2/ and the quantity 0k has the dimension of mass [kg]. Factors A and 
A0 are geometrical constants characteristic to the antenna. For an ordinary one wavelength dipole in space 
A= 2/3, for a point source as dipole in the fourth dimension A0 =1.1049. Equation (3.1:2) breaks down the 
Planck constant into primary electrical constants; the unit charge (e), and the vacuum permeability (0). In 
the intrinsic Planck constant (h0) used in the DU framework the velocity of light (as a non-constant 
quantity) is removed. As a result the unit of the intrinsic Planck constant is [kgm] instead of [kgm2/s] like 
the traditional Planck constant, Table 3.1-I(5,6). The removal of the velocity of light from the Planck 
constant links the concept of quantum to mass rather than to momentum. The breakdown of the Planck 
constant into primary constants shows the fundamental nature of the fine structure constant as number 
independent of any physical constant, Table 3.1-I(7).   

Localized mass object is described as a closed standing (mass)wave structure as illustrated with a one-
dimensional resonator in Figure 3.1-1. The external momentum of a mass object moving in space at 
velocity   can be expressed as the sum of momentums of the Doppler shifted front wave and back wave 

     0 0
0 0 0Re 2 2

½ 1 ½ 1
1 1

DeBroglie

k
k k

 
 

        
 

p c c c
    (3.1:3)  

or a wave front with wave number k propagating in parallel with the object at velocity v =  c 

 
0

0 0Re 21

k
k 


 


p c v   (3.1:4)  

where the wave number k is equal to the wave number of the effective mass (relativistic mass), Fig. 3.1-1 

0

2
01

effmk
k


 

 
 (3.1:5)  
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Figure 3.1-1(a). Mass object as one-dimensional standing wave structure (drawn in the direction of the real axis) moving at velocity . The 

momentum in space is the external momentum as the sum of the Doppler shifted front and back waves, which is observed as the momentum 
of a wave front propagating in the parent frame in parallel with the propagating mass object. (b) In the double slit experiment the deflection 
of the propagation path is determined by the external momentum which is subject to interference pattern of the divided wave fronts from the 
slit. 

A physical interpretation of equation (3.1:4) is that a mass object moving in space is associated with a 
parallel wave front carrying the external momentum the object in the parent frame.  

 
This is exceedingly important as a physical explanation to the double-slit experiment. An energy 

object carries the rest energy as a standing wave in a localized energy structure. The external 
momentum appears as wave front k propagating at velocity   in parallel with the localized object. The 
wave front is subject to buildup of interference patterns on the screen when passing through the slits. 
The deflection angle of a singe object is determined by the phase difference between the wave fronts 
from the slits, Fig. 3.1-1(b). 

3.2 Gravitation in Schwarzschild space and in DU space  
Table 3.2-I summarizes some predictions related to celestial mechanics in Schwarzschild space which 

is the GR counterpart of the DU space in the vicinity of a local mass center in space. 
At low gravitational field, far from the mass center the velocities of free fall as well as the orbital 

velocities in Schwarzschild space and DU space are essentially same as the corresponding Newtonian 
velocities. Close to critical radius, however, differences become meaningful.  

In Schwarzschild space the critical radius is 

  2

2
c Schwd

GM
r

c
  (3.2:1) 

which is the radius where Newtonian free fall from infinity achieves the velocity of light. Critical radius 
in DU space is  

  2
0 0

c DU

GM GM
r

c c c

   (3.2:2) 

 
2

0 0 Im 0Im 1 ComptonI k k   p c 

2

Re 0 0 Re

1
½

1
k


 





p c

Im

2

Re 0 0 Re

1
½

1
k


 





p c

Internal (rest) momentum External momentum 

Re – 

Re +

 c

Re Re 0 0 Re 021
k k

 


     


p p p c c 
 c(a) 

(b) 

2
0 0 1internal k  p c

Internal momentum:

External momentum:

Re 

0
0 21

external

k 





p c



 

 

12

 Local relativity (SR&GR) Global relativity (DU) 

1) Velocity of free fall 

 2GM rc   
 2 1 2ff     

(coordinate velocity) 
 2

1 1 1ff     

2) Orbital velocity at circular orbits 

1 2

1 3
orb








 

(coordinate velocity) 

 3
1orb     

3) Orbital period in Schwarzschild 
space (coordinate period) and in DU 
space 

2 2r
P

c




    ( = PNewton ) 

 r > 3rc(Schwd) 

  3 2

0

2
1crP

c 


 


      

4) Perihelion advance for a full 
revolution 

   
 2 2

6
2

1

G M m

c a e


 


 


    

 2 2

6
2

1

G M m

c a e


 


 


 

 
Table 3.2-I. Predictions related to celestial mechanics in Schwarzschild space [11] and in DU space. 

 
which is half of the critical radius in Schwarzschild space. The two different velocities c0 and c0 in 
(3.2:2) are the velocity of hypothetical homogeneous space the velocity of apparent homogeneous space 
in the fourth dimension.  

In Schwarzschild space the predicted orbital velocity at circular orbit exceeds the velocity of free fall 
when r is smaller than 3 times the Schwarzschild critical radius, which makes stable orbits impossible. In 
DU space orbital velocity decreases smoothly towards zero at r = rc(DU), which means that there are stable 
slow orbits between 0 <  r < 4rc(DU), Fig. 3.2-1(a,b).  

The importance of the slow orbits near the critical radius is that they maintain the mass of the black 
hole. 

 

 
 

Figure 3.2-1.  a) The velocity of free fall and the orbital velocity 
at circular orbits in Schwarzschild space, 

b) The velocity of free fall and the orbital velocity at circular 
orbits in DU space. The velocity of free fall in Newtonian space is 
given as a reference. Slow orbits between 0 <  r < 4rc(DU) in DU 
space maintain the mass of the black hole. 

c) The predictions by Schwarzschild and DU for period (in 
minutes) at circular orbits around Sgr A* in the center of Milky 
Way. The shortest observed period is 16.8  2 min [8] which is 
very close to the minimum period 14.8 minutes predicted by DU. 
Minimum period predicted in Schwarzschild space is about 28 
minutes, which occurs at r = 3rc(Schwd) = 6r c(DU). 
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The prediction for the orbital period at circular orbits in Schwarzschild space apply only for radii r > 
3rc(Schwd). The black hole at the center of the Milky Way, compact radio source Sgr A*, has the estimated 
mass of about 3.6 times the solar mass which means Mblack hole  7.21036 kg, which gives a period of 28 
minutes at the minimum stable radius r = 3rc(Schwd) in Schwarzschild space. The shortest observed period 
at Sgr A* is 16.8  2 min [12] which is very close to the prediction of minimum period 14.8 min in DU 
space at r = 2rc(DU), Fig. 3.2-1(c). 

Prediction for perihelion advance in elliptic orbits is essentially the same in Schwarzschild space and 
in DU space. In DU space the prediction can be derived in a closed mathematical form. 

3.3 Clocks and electromagnetic radiation in GR and DU  
In DU space the prediction for the characteristic emission and absorption frequency related to energy 

transitions in hydrogen like atoms is obtained by substituting equation (2.2:1) for rest energy into 
Balmer’s equation resulting 

 
 

   1, 2 2
1, 2 0 1, 2

10

1 1
n

n n

i in n n n
i

E
f f

h c
 




     (3.3:1) 

where f0(n1,n2) is the reference frequency for an atom at rest in hypothetical homogeneous space. Frequency 
f0(n1,n2)  is subject to decrease in the course of the expansion of space  
 

 Local relativity (SR&GR) Global relativity (DU) 

1) Flow of time (proper 
time) in Schwarzschild 
space and the frequency 
of a clock DU space 
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2) Gravitational red/blue 
shift. 
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light is conserved, wavelength 
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(= gravitational blueshift) 

Frequency is conserved, the velocity of 
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when compared to the frequency of a 
reference oscillator at receiver’s 
gravitational state) 

3) Shapiro delay 
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Table 3.3-I. summarizes some predictions related to the characteristic frequency of atomic oscillators (or proper 
time) and the propagation of electromagnetic radiation in space. 
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where t is the time since singularity. Characteristic frequencies are directly proportional to the velocity of 
light, both locally and in the course of the expansion of space which at present state of the expansion is 
about dc0/c0  3.610–11 /year.  

The wavelength of radiation emitted is  
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 (3.3:3) 

which is independent of the velocity of light but subject to an increase with the motion of the emitter. The 
Bohr radius of atom is directly proportional to the wavelength emitted, which means that the atomic 
dimensions are independent of the expansion of space. 

The proper time frequency in Schwarzschild space is  

 
2 2 4 2 2

0,0 0,0,

1 1 1 1

2 8 2 2
1 2 1GRf f f                  

 
 (3.3:4) 

The corresponding prediction in DU space is the last form of equation (3.3:4)  

    2 2 4 2
0,0 0,0,

1 1 1

2 8 2
1 1 1DUf f f                

 
 (3.3:5) 

The difference between the GR and DU frequencies in equations (3.3:4) and (3.3:5) is 
 

 
2 2

, ½DU GRf       (3.3:6) 

In clocks on Earth and in Earth satellites the difference between the DU and Schwarzschild predictions 
is of the order f/f  10–18 which is too small a difference to be detected with present clocks. The 
difference, however, is essential at extreme conditions where  and  approach unity, Fig. 3.3-1. 

In DU space, atomic oscillators (or clocks) at different gravitation potentials have different frequency 
but the wavelength they emit is independent of the gravitational potential of the clock. This is because the 
frequency of the oscillator changes in direct proportion to the local velocity of light (the velocity of space 
in the local fourth dimension).  

The frequency of electromagnetic radiation is conserved when transmitted from an emitter at one 
gravitational potential to a receiver at another gravitational potential. When compared to a reference 
oscillator at receiver’s gravitational potential, the received frequency, however, is observed changed 
because the frequency of a reference oscillator at receiver’s gravitational state is different from the 
frequency of the emitter at different gravitational potential, Fig. 3.3-2. 

 
 

 
 
 
 
 
Figure 3.3-1. The difference in the DU and GR 

predictions of the frequency of atomic oscillators at 
extreme conditions when  =  2  1. Such condition 
may appear close to a black hole in space. The GR and 
DU predictions in the figure are based on equations 
(3.2:4) and (3.2:5), respectively. 
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Figure 3.3-2. The velocity of light is lower close 
to a mass center, c<c which results in a 
decrease of the wavelength of electromagnetic 
radiation transmitted from A to B. Accordingly, the 
signal received at B is blueshifted relative to the 
reference wavelength observed in radiation 
emitted by a similar object in the B-state. The 
frequency of the radiation is unchanged during the 
transmission.  

 
There is a small difference in the predictions of Shapiro delay in Schwarzschild space and in DU 

space. In DU space the velocity of light affect equally in the radial and tangential components of the light 
path but the lengthening of the path due to the tilting of space occurs only for the radial component of the 
path. In the Schwarzschild derivation both the effects of proper time and the lengthening of the path are 
calculated for both the tangential and radial component of the light path, Table 3.3-1(3). If this were not 
the case it meant different velocity of light in the radial and tangential directions in Schwarzschild space, 
Fig. 3.3-3. When the tangential component of light path is zero, i.e. the signal path has radial direction to 
and from a mass center, the difference between the predictions vanishes, Table 3.3-1(4).  

In the Mariner 6 and 7 experiments [13] in 1970’s the signal delay was studied by comparing the 
delays at different passing distances d between the signal path and the Sun, i.e. the case of Table 3.3-I(3). 
In Mariner experiments, due to the lack of an absolute reference, the constant term in the DU prediction 
in Table 3.3-I(3) becomes ignored which means that the experiment is not able to distinguish the 
difference of the GR and DU predictions which in the Mariner case is 20 s at any passing distance (in 
the 160 to 200 s total delay). 

Prediction for the bending of light in the vicinity of a mass center according to the GR and DU are 
equal, Table 3.3-I(5). It means that predictions for gravitational lensing in the two frameworks are equal. 

 

 
Figure 3.3-3. (a) Light path AB from location A to location B follows the shape of the dent in space as a geodesic line in the gravitational 

frame of mass center M. Point A is at flat space distance r0A and point B is at flat space distance r0B from mass center M. Point AB is the flat 
space projection of point A on the flat space plane crossing point B. Line ABB is the distance between A and B as it would be without the 
dent. The velocity of light in the dent is reduced in proportion to 1/r0, i.e. the velocity of light at A is higher than the velocity of light at B. 
Distance ABA is the projection of path AB on the flat space plane. (b) The difference in the predictions of Shapiro delay in Schwarzschild 
space and in DU space is due to a different effect of the local tilting of space on the tangential component of the light path. In DU space the 
velocity of light affect equally in the radial and tangential components of the light path but the lengthening of the path occurs only in for the 
radial component of the path. In the Schwarzschild derivation both the effects of proper time and the lengthening of the path are calculated 
for both the tangential and radial component of the light path. If this were not the case it meant different velocity of light in the radial and 
tangential directions in Schwarzschild space where dt instead of c (like in the DU) is a function of the gravitational state. 

M

Im0 

r 

A 

B 

r 

AB

X(A–B)0
dx 

(b) 

 

dr(radial) 

(a) 

ds(tangential) 

rec= fB /fA B 

cA 

frec = fA 

A

fB = f0(1B) B =cB /fB 

cB 

fA = f0(1A) 

B 



 

 

16

The Doppler effect of electromagnetic radiation in the GR framework is expressed in terms of local 
Schwarzschild space; in the DU prediction also the motions and gravitational state of the source and 
receiver in the parent frames are taken into account, Table 3.3-I(6). For source and receiver in the same 
gravitational frame the predictions are equal. The Doppler effect in Table 3.3-I(6) does not include the 
effect of the expansion of space which results in further frequency shift at cosmological distances. 

The Doppler effect of electromagnetic radiation increases equally the frequency and the wave number 
of radiation observed in a frame moving in the direction of the radiation. For radiation sent at rest in a 
local frame and received by an observer moving in the direction of the radiation in the same gravitational 
state the observed angular frequency is (both according to GR and DU predictions) 

       
2

1 1
1

B
AA B B B

B

   


   


r r  (3.2.4:4) 

and the observed wave number k = 2 / 
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B
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
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which result in observed phase velocity  

 

 

A B A
B A

AA B

c c
k k

 
    (3.2.4:4) 

i.e. the phase velocity observed in a frame moving with the observer, is equal to the phase velocity 
observed at rest in the parent frame, Table 3.3-II.  
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Observation of a mass object in a 
moving frame.  

v  =  velocity of the moving frame 
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Table 3.3-II. Transformation of the momentum of a mass object and the momentum of electromagnetic radiation 
observed in a frame moving at velocity vframe in its parent frame. For simplicity, velocity vframe is assumed small 
enough to allow ignoring the increase of the effective (relativistic) mass. The conclusion is that the (phase) velocity 
of light is observed unchanged without a specific definition of the constancy. The conclusion is the same also when 
the relativistic effects of mass increase are included. 
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The late 1800’s great confusion of the conservation of the observed velocity of light in moving frames 
obtains a trivial solution once we study the moving frames as momentum frames instead of velocity 
frames: 

 
The constancy of the observed (phase) velocity of light in moving frames is a consequence of the 

change of momentum via the Doppler shift of frequency (and mass equivalence) instead of change in 
the velocity as we observe the change of the  momentum of mass objects. 
 

Studying of the Michelson – Morley interferometer as a momentum frame moving in its parent 
frames guarantees a zero result. 

3.4 Cosmological appearance of space derived from general relativity and the DU 
At the cosmological scale, like the DU space, GR space is assumed to be isotropic and homogeneous; 

i.e., it looks the same from any point in space [14]. As a major difference to the Friedman-Lemaître-
Robertson-Walker (FLRW) cosmology or CDM cosmology (Lambda Cold Dark Matter cosmology), 
local gravitational systems in DU space are subject to expansion in direct proportion to the expansion of 
the 4-radius R0. Accordingly, e.g., the radii of galaxies are not observed as standard rods but as expanding 
objects which makes the sizes of galaxies appear in Euclidean geometry to the observer.  

As shown by an analysis of the Bohr radius, material objects built of atoms and molecules are not 
subject to expansion with space. Like the Bohr radius, the characteristic emission wavelengths of atomic 
objects are unchanged in the course of the expansion of space. When propagating in space, the 
wavelength of electromagnetic radiation is increased in direct proportion to the expansion. Accordingly, 
when detected after propagation in space, characteristic radiation is observed redshifted relative to the 
wavelength emitted by the corresponding transition in situ at the time of observation. 

Major difference between FLRW space and DU space comes from the general cosmological 
appearance and the picture of reality. The expression of energy and the evolution of DU space is a 
continuous process from infinity in the past to infinity in the future under unchanged laws of nature. In 
the DU mass is not a form of energy but the substance for the expression of energy via excitation of 
motion against release of potential energy. Any local expression of energy in DU space is linked to the 
rest of space. Anti-energy for the rest energy of a mass object in space is the gravitational energy due to 
the rest of mass in space as indicated by zero-energy balance of the rest energy and the global 
gravitational energy. Relativity in DU space means relativity of local to the whole. 

Table 3.4-I summarizes some general features of the FLRW space and the DU space. The difference 
between the local approach of the GR based FLRW space and the global approach of the DU space is 
well demonstrated by the scope of expansion: For conserving the gravitational energy in local systems 
expansion in FLRW space is assumed to occur between galaxies or galaxy groups only. In the DU local 
gravitation is a share of the total gravitational energy; dilution of the total gravitational energy in the 
expansion dilutes equally the gravitational energy of local systems, which is seen as the expansion of 
gravitationally bound local systems with the expansion of whole space.  

Another important difference between the FLRW and DU models is the conservation of the energy of 
radiation propagating in space. In both models the wavelength of radiation is supposed to increase in 
direct proportion to the expansion of space. In the FLRW interpretation of the effect of redshift on the 
power density of radiation is based on the fundamental work of Hubble, Tolman, Humason, deSitter, and 
Robertson, in the 1930’s [15–20]. After an active debate the conclusion was that the dilution of the power 
density of redshifted radiation comes from two factors: The reduced rate of quanta received, and the 
dilution of the energy of a quantum due to the reduced frequency as suggested by a direct interpretation of 
the Planck’s equation. Combining these two effects the dilution of power density due to the expansion of 
FLRW space obtains the form 
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 (3.4:1) 

where T0(z) is the time required to receive a quantum of radiation (which in the DU framework is the cycle 
time). The dilution of the energy of a quantum means loss of total energy of radiation propagating in 
FLRW space. 
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 FLRW space DU space 

The beginning 

Big Bang, singularity of space 
about 13.7 billion years ago: start 
of time, turn-on of the laws of 
physics 

The process of energy buildup and 
release via contraction and expansion 
works like pendulum from infinity in 
the past to infinity in the future. Time 
and the laws of physics are perpetual. 

The future 
The future development of the 
universe cannot be predicted. 

The ongoing expansion continues to 
infinity in a zero-energy balance of 
motion and gravitation (see Fig. 2.1-1) 

The shape of space Undetermined space-time Surface of 4-sphere 

Expansion of space 

Expansion occurs as Hubble flow 
between galaxies or galaxy groups 
only. Presently, the expansion is 
assumed to accelerate due to an 
increasing share of dark energy. 

All gravitationally bound systems 
expand with the expansion of space. 

Expansion velocity decreases with 
time since singularity as 

1/ 3
1 34
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Dilution of the power 
density of redshifted 
electromagnetic radiation 

Wavelength of radiation is 
increased + the energy content of 
a quantum is diluted 

 2

0 1zF F z   

Conservation of total energy is 
violated. 

Wavelength of radiation is increased 
but the energy content of a quantum is 
conserved (= mass equivalence of a 
cycle of radiation is conserved) 

 0 1zF F z   

Conservation of total energy is 
honored. 

Antimatter Disappeared at Big Bang 
Antienergy of the rest energy of a 
mass object is the gravitational energy 
due to the rest of mass in space. 

Dark matter Existent, undefined Unstructured matter (wavelike) 

Dark energy Existent, needed to match CDM 
predictions to observations 

Non-existent. DU predictions are 
consistent with observations without 
dark energy (or any other parameter). 

 
Table 3.4-I. Comparison of the development and general appearance of FLRW space and DU space. 

In the DU framework the conservation of the energy of radiation is seen as the conservation of the 
mass equivalence of radiation, i.e. the energy carried by a cycle of radiation 

  00 ,zE m c c   (3.4:2) 

where the mass equivalence m of radiation is   

0 0m h   (3.4:3) 

and 0 is the wavelength emitted. An increase of the wavelength does not reduce the mass equivalence but 
dilutes it in volume and the cycle time when received. Conservation of the mass equivalence of radiation 
means that the lengthening of the wavelength dilutes density of mass carried by the wave and thus the 
power density observed but it does not lose mass  
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 FLRW cosmology DU cosmology 
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moving distance)       0 2

1

1 1 2

z

M H

m

D R dz
z z z z 


    

   0 ln 1D R z   

2) Angular diameter 
distance (referred to as 
optical distance in DU)      0 2

1 1

1 1 1 2

z

A H

m

D R dz
z z z z z 


     
  

0 1

z
D R

z



 

3) Angular diameter of 
galaxies and quasars 

 
     20

1 1

1 1 2

zR

H
m

d z
dz

R z z z z







    
   

0

1
1R Rd d

z
D R z

     

4) Luminosity distance  
     0 2

1
1

1 1 2

z

L H

m

D R z dz
z z z z 

 
    

  
0 1
1

z
D R z

z
 


 

5) Magnitude for K-
corrected observations 
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Table 3.4-II. The factor (1+z) and the resulting Euclidean appearance in the DU prediction for angular diameter 
comes from the fact that the diameter of the galaxies and quasars increase in direct proportion to the expansion of 
space. Luminosity distance is the distance equivalence used to match the power density of  redshifted radiation to 
the classical F 1/D2 formula. For making the DU prediction of magnitude comparable to the prediction of 
magnitude in FLRW cosmology [20] the effect of K-correction [22] is included. Detailed derivation of the DU 
predictions are given in Appendix A1. 

When solved from Maxwell’s equation [see equation (3.1:2)] the energy emitted into one cycle of 
radiation by a unit charge transition from a point source is  

E hf   or    
3 2

00 1.1049 2E e c f      (3.4:5) 

The Planck equation describes the energy conversion at the emission of radiation as the insert of 
mass equivalence into a cycle of radiation. The Planck equation is not consistent for describing the 
conservation of mass equivalence carried by a cycle of radiation.  

Table 3.4-II summarizes the predictions for three important distance definitions and the predictions for 
the angular size and magnitudes. The physical distance which means the momentary distance of objects, 
the angular diameter distance which is the distance of light path from the object to the observer in 
expanding space, and luminosity distance a distance equivalence of redshifted radiation for the classical 
definition of magnitude. The meaning of physical distance and the optical distance in DU-space are 
illustrated in Figure 3.4-1. A comparison of the predictions in Table 3.4-II(2) is given in Figure 3.4-2. 
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Figure 3.4-1. (a) The classical Hubble law 
corresponds to Euclidean space where the observed 
distance of the object is equal to the physical distance, 
the arc Dphys, at the time of the observation. (b) When 
the propagation time of light from the object is taken 
into account the observed distance is the optical 
distance which is the length of the integrated path over 
which light propagates in the tangential direction on the 
“surface” of the expanding 4-sphere. Because the 
velocity of light in space is equal to the expansion of 
space in the direction of R4, the optical distance is 
D = R0–R0(0), the lengthening of the 4-radius during the 
propagation time. 
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Figure 3.4-2. Optical distance of objects in 
DU space (solid line) and the angular diameter 
distance in FLRW space for m = 1,  = 0 and 
for m = 0.27,  = 0.73 corresponding to the 
Einstein-deSitter condition in FLRW space and 
the present estimates of mass and dark energy 
densities in CDM corrected space, respectively 
(dashed lines).  

 

 
In Figure 3.4-3 the DU prediction and the FLRW prediction for the angular diameter are compared to 

observations of the Largest Angular Size (LAS) of galaxies and quasars in the redshift range 0.001 < z < 3 
[23]. In figure 3.4-3 (a) the observation data is set between two Euclidean lines of the DU prediction in 
Table 3.4-II(3). The FLRW prediction is calculated for the conventional Einstein de Sitter case (m= 1 
and = 0) shown by the solid curve, and for the recently preferred case with a share of dark energy 
included as m= 0.27 and  = 0.73 (dashed curves). Both FLRW predictions deviate significantly from 
the Euclidean lines in (a), that enclose the set of data uniformly in the whole redshift range observed. As 
shown in figure 3.4-3 (b) the effect of the dark energy contribution on the FLRW prediction of the 
angular size is marginal.  

Figure 3.4-4 compares the predictions for the K-corrected magnitudes of Ia supernovae in DU and 
FLRW space, respectively. The observed magnitudes in the figure are based on Riess et al.’s “high-
confidence” dataset and the data from the HST [24]. See Appendix A1 for a detailed analysis. 

 
Figure 3.4-3. Dataset of observed Largest Angular Size (LAS) of quasars and galaxies in the redshift range 0.001 < z < 3 which is the 

range achievable with todays’ techniques. Open circles are galaxies, filled circles are quasars [23]. In (a) observations are compared with the 
DU prediction [Table 3.4-2(3)]. In (b) observations are compared with the FLRW prediction [Table 3.4-2(3)] with m= 0 and  = 0 (solid 
curves), and m= 0.27 and = 0.73 (dashed curves). 
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Figure 3.4-4. Distance modulus  = m – M, vs. redshift for Riess et al. “high-confidence” dataset and the data from the HST for Ia 

supernovae, Riess [24]. The optimum fit for the FLRW prediction is based on m 0 0.27 and  = 0.73. In spite of the essentially different 
derivation and mathematical appearance [see Table 3.4-II(5)] the difference between the DU prediction [see Table 3.4-II(5)] (solid curve), 
and the prediction of the standard model (dashed curve) is very small in the red-shift range covered by observations, but becomes 
meaningful at redshifts above  z > 3. Unlike the FLRW prediction, the DU prediction has no adjustable parameters. 

 

4. Summary and conclusions 

Dynamic Universe is holistic approach to the description of physical reality. Space is studied as a 
closed energy system manifested by the dynamics resulting from the zero-energy balance of motion and 
gravitation in the structure. Relativity in such a structure is not relativity between the observer and the 
object but global relativity between local and the whole. Global relativity is not described in terms of 
modified coordinate quantities. Time and distance in DU space are universal. Global relativity shows the 
locally available share of total energy in space via a system of nested energy frames relating the locally 
available rest energy of an object to the rest energy the object had at rest in hypothetical homogeneous 
space where all mass is uniformly distributed into space. 

The DU approach shows the role of mass as wavelike substance for the expression of energy and 
allows a unified expression of all energy forms. The identification of a common substance paves the way 
towards a unified picture of physics including the quantum mechanical description of local energy 
structures. In the DU perspective unification is not searched from the unification of forces but from a 
unified description of energy and the unbroken linkage of energy structures from elementary particles up 
to whole space — or perhaps more correctly, from whole space down to the multitude of local structures. 
The linkage of local and whole is complemented by the overall zero-energy balance of the rest energy and 
the global gravitational energy which provides a negative counterpart to the rest energy of a local object. 

The DU approach leads to a compact description of the structure and development of space 
describable largely in a closed mathematical form which provides precise predictions to physical and 
cosmological observables in an excellent agreement with observations. 
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Appendix 1. Derivation of cosmological predictions 

A1.1 Optical distance and the Hubble law 
As a consequence of the spherical symmetry and the zero-energy balance in space, the velocity of light 

is determined by the velocity of space in the fourth dimension. The momentum of electromagnetic 
radiation has the direction of propagation in space.  Although the actual path of light is a spiral in four 
dimensions, the length of the optical path in the direction of the momentum of radiation in space, is the 
tangential component of the spiral, which is equal to the increase of the 4-radius, the radial component of 
the path, during the propagation, Fig. A1.1-1 
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The differential of optical distance can be expressed in terms of R0 and the distance angle  as 

0 0 0dD R d c dt dR    (A1.1:2)  

By first solving for the distance angle   
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the optical distance D obtains the form 
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where R0 means the value of the 4-radius at the time of the observation. 
The observed recession velocity, the velocity at which the optical distance increases, obtains the form 
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As demonstrated by equation (A1.1:5) the maximum value of the observed optical recession velocity 
never exceeds the velocity of light, c, at the time of the observation, but approaches it asymptotically 
when distance D approaches the length of 4-radius R0. 

Atoms conserve their dimensions in expanding space. As shown by Balmer’s equation, the 
characteristic emission wavelength is directly proportional to the Bohr radius, which means that also the 
characteristic emission wavelengths of atoms are unchanged in the course of the expansion of space. The 
wavelength of radiation propagating in expanding space is assumed to be subject to increase in direct 
proportion to the expansion space, Fig. A1.1-1(b). Accordingly, redshift, the increase of the wavelength 
becomes 
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where D = R0 – R0(0) is the optical distance of the object given in (A1.1:4),  and R0 are the wavelength 
and the 4-radius at the time of the observation, respectively, and R0(0) is the 4-radius of space at the time 
the observed light was emitted, see Fig. A1.1-1(b). Solved from (A1.1-6) the optical distance can be 
expressed 
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Space at redshift z is observed as the surface of an observer-centered 3-dimensional sphere with radius 
D, Fig. A1.1-1(c).  
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Figure A1.1-1. (a) The redshift of radiation results from the lengthening of the wavelength with the expansion of space. The number of 

quanta (or wavelengths of radiation) on the way from an emitter of constant intensity to an observer at a fixed distance angle from the 
emitter is constant with time. (b) Expansion of space during the propagation time of light from objects at different distances: The length of 
the 4-radius R4 and the corresponding optical path is indicated for redshifts z = 0.5 to 5. (c) Propagation of light in expanding spherically 
closed space. The apparent line of sight is the straight tangential line. The distance to the apparent source of the light is at the optical distance 
D =R(observation) – R(emission) along the apparent line of sight. Objects with redshift z, A(z) and B(z), are observed as apparent sources A'(z) and 
B'(z) on an observer centered 3-dimensional sphere with radius D = R0 z/(1+z ). 

Atoms conserve their dimensions in expanding space. As shown by Balmer’s equation, the 
characteristic emission wavelength is directly proportional to the Bohr radius, which means that also the 
characteristic emission wavelengths of atoms are unchanged in the course of the expansion of space. The 
wavelength of radiation propagating in expanding space is assumed to be subject to increase in direct 
proportion to the expansion space, Fig. A1.1-1(b). Accordingly, redshift, the increase of the wavelength 
becomes 

 

 

0 0 00 0

0 00 0

1
1

R R D R
z e

R D R
 




    


 (A1.1:6) 

where D = R0 – R0(0) is the optical distance of the object given in (A1.1:4),  and R0 are the wavelength 
and the 4-radius at the time of the observation, respectively, and R0(0) is the 4-radius of space at the time 
the observed light was emitted, see Fig. A1.1-1(b). Solved from (A1.1-6) the optical distance can be 
expressed 
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Space at redshift z is observed as the surface of an observer-centered 3-dimensional sphere with radius 
D, Fig. A1.1-1(c).  

The optical distance D of equation (A1.1:7) corresponds closest to the angular diameter distance in the 
standard model [21] 
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where the flat space condition, m +  = 1 is assumed, and RH = c/H0 is the Hubble radius corresponding 
to R0 in DU space. m and  give the shares of the densities of baryonic plus dark mass and the dark 
energy in space, respectively. The term “angular diameter distance” refers to the distance converted into 
the observation angle of a standard rod and non-expanding objects in space. In FLRW cosmology not 
only solid objects like stars but also all local systems like galaxies and quasars are non-expanding objects 
which allows the expression of the observation angle of cosmological objects generally as 

 
     20

1
1

1 1 2

z

HA
m

d d
z dz

RD z z z z




  
    

  (A1.1:9) 

R4(0) 

observer 

emitting 
object 

O

R4 

t 

t(0) 

 

z=5

observer 

z=0.5

z=2
z = 1

Apparent source locations

observer 

(a) (b) (c) 

D D 

source B(z) source A(z) 

B'(z)A'(z)

light 
paths 



 

 

25

The observation angle of a standard rod or non-expanding objects (solid objects like stars) in DU 
space is 
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As shown by equation (A1.1:10), the observation angle of a standard rod approaches the size angle 
d = drod/R4 of the object at high redshift (z >> 1).  

In DU space gravitationally bound local systems expand in direct proportion to the expansion of space. 
The angular size of an expanding object with diameter d = dR/(1+z) at the time light from the object is 
emitted is 
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where the ratio dR/R4 = d means the angular size of the expanding object as seen from the center of the 4-
sphere. Equation (A1.1:11) implies Euclidean appearance of expanding objects.  

The standard model of FLRW space defines two other distance quantities related to the angular 
diameter distance. The co-moving distance is the distance of objects as it is at the time of observation, i.e. 
excluding the light propagation time from the object. The co-moving distance in the FLRW space is 
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The DU equivalence of co-moving distance is the physical distance measured along the curved surface 
of spherically closed space 

 0 0 ln 1physD R R z    (A1.1:13) 

Luminosity distance in FLRW space is the distance equivalence (in parsec) used to convert distance 
into magnitude using the classical definition of magnitude 
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or in a more illustrative form to give the apparent magnitude m in equation 
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 (A1.1:15) 

where M is the absolute magnitude of the reference source at distance d0 = 10 pc. The Luminosity 
distance in FLRW cosmology is 
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which assumes factor (1+z)2 for the redshift dilution in the observed power density (see section A1.2) and 
another (1+z)2 “aberration factor” for the spreading of radiation due to expansion. The magnitude 
prediction based on luminosity distance DL in FLRW cosmology assumes reduction of the observed 
power densities to power densities in “emitter’s rest frame” by a (1+z) factor in the K-correction which is 
classically used as the instrumental correction for redshifted spectrum, see sections A1.3 and A1.4. 

In DU space the dilution factor of redshift is (1+z). In DU space, luminosity distance for observed 
bolometric power density is 
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 (A1.1:18) 

The physical basis of the redshift dilution is discussed in section A1.2. Figure A1.1-2 compares the 
distance definitions in FLRW space and DU space. 
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Figure A1.1-2. Comparison of distance definitions in FLRW space and DU space. The dashed line in both figures is the linear distance 

corresponding to classical Hubble law D = H0 z. 

A1.2 The effects of redshift and distance on electromagnetic radiation 
In the DU framework the Coulomb energy and the energy of electromagnetic radiation can be 

expressed in terms of a mass equivalence and the velocity of light, formally, like the rest energy of matter.  
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Conserving the mass equivalence of a quantum of radiation, the energy flux of electromagnetic 
radiation becomes 
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where e is the wavelength of radiation at the emission. The reference flux emitted by an identical source 
at the time and location the redshifted radiation is received (r = e) is 
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Relative to the reference flux, the power density in the redshifted flux is 
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In DU space, the energy flux observed in radiation redshifted by z is diluted by factor (1+z), not by 
factor (1+z)2 as assumed in the standard model solution [33]. The difference comes from the 
interpretation of the effect of redshift on the energy of a quantum. As first proposed by Hubble and 
Humason [16] and later by de Sitter [17], the energy of a quantum is reduced by (1+z) as a consequence 
of the effect of Planck’s equation E = hf as a reduction of the “intensity of the radiation”. When receiving 
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the redshifted radiation at a lowered frequency, a second (1+z) factor was assumed. Hubble [19] 
considered that the latter is relevant only in the case that the redshift is due to recession velocity [18]. The 
first (1+z) factor was called the “energy effect” and the second (1+z) factor the “number effect”. 

Conservation of the mass equivalence of radiation in DU space negates the basis for an “energy effect” 
as a violation of the conservation of energy. An analysis of the linkage between Planck’s equation and 
Maxwell’s equations shows that Planck’s equation describes the energy conversion at the emission of 
electromagnetic radiation. Redshift should be understood as dilution of the energy density due to an 
increase in the wavelength in the direction of propagation, not as losing of energy. Accordingly, the 
observed energy flux F = E f is subject only to a single (1+z) dilution factor, the “number effect” in the 
historical terms. 

Referring to equation (A1.2:4), at distance D from source A the density of the energy flux FA is 
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where N is the intensity factor of the source. Related to the flux density FB from a reference source B with 
same intensity at distance d0 (z  0) the energy flux FA is 
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Substitution of equation (A1.1:7) for D in (A1.2:8) gives 
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For a d0 = 10 pc reference source, FB = F10pc we get the expression for the apparent magnitude  
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where M is the absolute magnitude of the reference source at distance d0. 
Equation (A1.2:10) applies for the bolometric energy flux observed for radiation from a source at 

optical distance (angular size distance) D = R4z /(1+z) from the observer in DU space. Equation 
(A1.2:10) does not include possible effects of galactic extinction, spectral distortion in Earth atmosphere, 
or effects due to the local motion and gravitational environment of the source and the receiver. 

In the present practice, apparent magnitudes are expressed as K-corrected magnitudes which in 
addition to instrumental factors for bolometric magnitude include a “correction to source rest frame” 
required by the prediction of the apparent magnitude in the standard cosmology model. To make the DU 
prediction in equation (A1.2:10) consistent with the K-corrected magnitudes assumed in the FLRW 
prediction, equation (A1.2:10) is be complemented as 

   4

0

5log 5log 2.5log 1K

R
m M z z K

D
       (A1.2:11) 

The K-correction is discussed in detail in section A1.4. 

A1.3 Multi-bandpass detection 
For analyzing the detection of bolometric flux densities and magnitudes by multi-bandpass photometry 

the source radiation is assumed to have the spectrum of blackbody radiation. The bandpass system 
applied consists of a set of UBVIZYJHK filters approximated with transmissions curves of the form of 
normal distribution 
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where C(X) is the peak wavelength of filter X, X the half width of the filter, WX = X/C(X) the relative 
width, and ½ = 2.35481 is half width deviation of the normal distribution (Fig. A1.3-1).  
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For the numerical calculation of the energy flux from a blackbody source, equation (A.2:10) in 
Appendix A2 is rewritten for a relative wavelength-differential dz/z = d/ << WX 

 
Figure A1.3-1. The effect of redshift z = 0…2 (shown in steps of 0.2) on the energy flux density per relative bandwidth of the blackbody 

radiation spectrum from a T = 6600 K blackbody source corresponding to T = 440 nm and W = 557 nm (solid curves). Transmission 
curves of UBVRIZYJHK filters listed in the table are shown with dashed lines. The half widths of the filters follow the widths of standard 
filters in the Johnson system. All transmission curves are approximated with a normal distribution. The horizontal axis shows the wavelength 
in nanometers in a logarithmic scale.  
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Equation (A1.3:2) excludes the dilution due to the distance from the source to the observer. Integration 
of (A1.3:2) gives the bolometric radiation  
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The transmission through filter X, normalized to the bolometric flux by applying equation (A2:12), 
can now be calculated by applying the transmission function of equation (A1.3:1) to the flux in (A1.3:2) 
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which gives the flux observed through filter X as a function of the redshift of the radiation. Figure A1.3-2 
shows the normalized transmission curves calculated for filters UBVRIZJ by integration of (A1.3:4). 
Each curve touches the bolometric curve (A1.3:3) at the redshift matching the maximum of the radiation 
flux to the nominal wavelength of the filter. 

The energy flux of equation (A1.3:4) from sources at a small distance d0 (zdo  0) and at distance D (zD 
> 0) are related  
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Substitution of equation (A1.1:7) for D and equation (A1.3:4) for FX(D) and FX0(do) in (A1.3:5) gives the 

radiation power observed in filters X and X0 from standard sources at distances D and d0, respectively 
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By denoting the integrals in the numerator and denominator in (A1.3:6) by IX(D) and IX0(do), 
respectively, energy flux FX(D) can be expressed 
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Choosing d0 = 10 pc, the apparent magnitude for flux through filter X at distance D can be expressed 
as 
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where M is the absolute magnitude of the reference source at distance 10 pc. 
For R4 = 14109 l.y., consistent with Hubble constant H0 = 70 [(km/s)/Mpc], the numerical value of the 

second term in (A1.3:8) is 5log(R4/10pc) = 43.16 magnitude units. For Ia supernovae the numerical value 
for the absolute magnitude is about M  19.5.  

When filter X is chosen to match C(X) = W(1+z)  and C(X0) = W  [or C(X) = T (1+z) and C(X0) = T], 
the integrals IX(D) and IX0(do) are related as the relative bandwidths   
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which means that for optimally chosen filters with equal relative widths the last term in equation (A1.3:8) 
is zero and equation (A1.3:8) obtains the form of equation (A1.2:10) for bolometric energy flux 
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Figure A1.3-2. Transmission curves 
obtained by numerical integration of (58) 
for filters UBVRIZJ for radiation in the 
redshift range z = 0…2 from a blackbody 
with T = 350 nm (W = 440 nm, T = 8300 
K). Each curve touches the bolometric 
curve of equation (57) at the redshift 
matching maximum of the radiation flux 
to the nominal wavelength W of the filter 
(small circles in the figure). 
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Figure A1.3-3 (a, b) Predicted magnitudes (A1.3:8) for filters BVRIZJ as functions of redshift are shown as the families of curves drawn 

with dashed line. The blackbody temperature in (a) is 8300 K and 6600 K in (b), see Appendix A2 for the definitions of T and W 
characterizing blackbody radiation. (c) Plot of the peak magnitudes of normal Sn Ia observed in BVRIYJ filters as presented by Tonry et al. 
[34] in Table 14. The transmission functions of the filters used by Tonry et al. are slightly different from the transmission functions used in 
calculations for (a) and (b). The DU prediction (A1.3:10) for the magnitudes in optimally chosen filters is shown by the solid DU curve in 
each figure. 

Figure A1.3-3 illustrates magnitudes calculated for filters X = B, V, R, I, Z, J from equation (A1.3:8) in 
the redshift range z = 0…2. Each curve touches the solid curve of equation (A1.3:10) corresponding to 
the bolometric magnitude obtainable with optimal filters at each redshift in the redshift range studied. The 
predictions are compared to observed magnitudes, Tonry et al. [34], Fig. A1.3-3(c). 

A1.4 K-corrected magnitudes 
In the observation praxis based on Standard Cosmology Model, direct observations of magnitudes in 

the bandpass filters are treated with K-correction which corrects the filter mismatch and converts the 
observed magnitude to the “emitter’s rest frame” presented by observations in a bandpass matched to a 
low redshift reference of the objects studied. The K-correction for observations in the Xj band relative to 
the rest frame reference in the Xi band is defined [22] 
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 (A1.4:1) 

In the case of a blackbody source and filters with transmission functions described by a normal 
distribution, equation (A1.4:1) can be expressed by substituting equation (A1.3:2) for the energy flux 
integrals, equation (A1.3:1) for the transmission curves of the filters, and the relative bandwidths of filters 
i and j for the transmission integrals 
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 (A1.4:2) 

where the relative differential d / of (A1.3:2) is replaced by differential d to meet the definition of 
(A1.4:1). Figure A1.4-1 (a) illustrates the KBX-corrections calculated for radiation from a blackbody 
source with T = 440 nm equivalent to 6600 K blackbody temperature. An optimal choice of filters, 
matching the central wavelength of the filter to the wavelength of the maximum of redshifted radiation, 
leads to the K-correction 

   5log 1K z z   (A1.4:3) 

with an accuracy of better than 0.1 magnitude units in the whole range of redshifts covered with the set 
filters used. The difference between the K-corrections in equation (A1.4:2) and (A1.4:3) is presented in 
Figure A1.4-1(b). 

Substitution of (A1.4:3) for K in equation (A1.2:11) gives the DU space prediction for K-corrected 
magnitudes 
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The prediction for K-corrected magnitudes in the standard model is given by equation   
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where RH = c/H0  14109 l.y. is the Hubble distance, the standard model replacement of R4 in DU space, 
and DL the luminosity distance defined in equation (A1.1:16). Mass density parameters m and  give 
the density shares of mass and dark energy in space. For a flat space condition the sum m +  = 1.  

  
Figure A1.4-1. (a) KBX-corrections (in magnitude units) according to (A1.4:2) for B band as the reference frame, calculated in the 

redshift range z = 0…2 for radiation from a blackbody source with T =440 nm equivalent to 6600 K blackbody temperature. All KBX-
correction curves touch the solid K(z) curve, which shows the K(z) = 5log(1+z) function. (b) The difference KBX –K(z). With an optimal 
choice of filters, the difference KBX –K(z) is smaller than 0.05 magnitude units in the whole range of redshifts z = 0…2 covered by the set of 
filters B…J demonstrating the bolometric detection with optimally chosen filters. 
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Figure A1.4-2.  Distance modulus  = m – M, vs. redshift for Riess et al.’s gold dataset and the data from the HST. The triangles represent 

data obtained via ground-based observations, and the circles represent data obtained by the HST [24]. The optimum fit for the standard 
cosmology prediction (A1.4:5) is shown by the dashed curve, and the fit for the DU prediction (A1.4:4) is shown, slightly below, by the 
solid curve [4]. 

The best fit of equation (A1.4:5) to the K-corrected magnitudes of Ia supernova observations has been 
obtained with m = 0.26 … 0.31 and  = 0.74…0.69 [24…32]. Figure A1.4-2 shows a comparison of 
the prediction given by equation (A1.4:5) with m  0.31,   0.69 Ω and H0 = 64.3 used by Riess et al. 
[25] and the DU space prediction for K-corrected magnitudes in equation (A1.4:4).  

In the redshift range z = 0…2 the apparent magnitude of equation (A1.4:5) coincides accurately with 
the magnitudes of equation (A1.4:4). The K-corrections used by Riess et al. [25], Table 2, follow the K(z) 
= 5log(1+z) prediction of equation (A1.4:3), Fig. A1.4-3. 
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Figure A14-3. Average KB,X-
corrections (black squares) collected from 
the KB,X data in Table 2 used by Riess et al. 
(2004) for the K-corrected distance 
modulus data shown in Figure A1.4-2. The 
solid curve gives the theoretical K-
correction (A1.4:3), K = 5log(1+z), 
derived for filters matched to redshifted 
spectra (see Fig. A1.4-1) and applied in 
equation (A1.4:4) for the DU prediction 
for K corrected apparent magnitude. 
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Figure A1.4-4. Comparison of predictions for the K-corrected apparent magnitude of standard sources in the redshift range 0.01...1000 

given by the Standard Cosmology Model with m=0.3/=0.7 and m=1/=0 according to equation (A1.4:5), and DU space given by 
equation (A1.4:4). In each curve the absolute magnitude used is M = –19.5. The m=0.3/=0.7 prediction follows the DU prediction 
closely up to redshift z  2, the m=1/=0 prediction of the standard model shows remarkable deviation even at smaller redshifts. 

At redshifts above z > 2 the difference between the two predictions, (A1.4:4) and (A1.4:5), becomes 
noticeable and grows up to several magnitude units at z > 10, Fig. A1.4-4. For comparison, Figure A1.4-4 
shows also the standard model prediction for m = 1 and  = 0. 

A1.5 Galaxy count 

The relative volume differential dV/V of space as the function of the distance angle  from the 
observer is, Fig. A1.5-1, 
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Figure A1.5-1. Calculation of the volume 
distribution as the function of distance angle  
and redshift z. The relative share of dV of the total 
volume V of space is conserved throughout the 
expansion. 
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Figure A1.5-2. Number of galaxies in distance differential 
dD/D in redshift range 0…22, which corresponds to distance 
angle  = 0… /2, i.e. across the spherically closed space. The 
calculated curve is based on a constant total number of galaxies in 
the redshift range studied. 

Figure A1.5-3. Prediction for the number of galaxies in redshift 
differential dz/z and in the observed bolometric power density 
differential dF/F in the redshift range 10–5…10. Power density 
F = 1 at redshift z = 10–5 has been chosen as the reference. The 
maximum number count /str occurs at redshift z  4.5. No 
evolution factors are assumed in the prediction. 

 
Assuming a constant number of galaxies in a redshift range studied, the number of galaxies can be 

related to a relative redshift differential, Fig. A1.1-2 
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and to the bolometric power density in a power range measured from the galaxies at different distances, 
Fig. A1.1-3 
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where the observed bolometric power density is inversely proportional to the square of distance D and 
diluted by factor (1+z) due to redshift z. 

A1.6 Surface brightness of expanding and non-expanding objects 
The Tolman test [18], [20], [35], and [36] is considered as a critical test for an expanding universe 

model. In expanding space, according to Tolman’s prediction, the observed surface brightness of standard 
objects decreases by the factor (1+z)4 with the redshift. Two of the four (1+z) factors are explained as 
consequences of the redshift on the radiation received: a decrease in the arrival rate (the number effect) 
and in the energy of photons (the energy effect), as discussed in Section A1.2. The two additional (1+z) 
factors are explained as an apparent increase in the observed area due to aberration.  

With reference to equation (A1.1:11) the angular area of an expanding object like a galaxy with a 
present radius re is 
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where D is the optical distance of the object. Accordingly, the observed bolometric surface brightness of 
the object is obtained by dividing the bolometric energy flux of equation (A1.2:9) by the angular size of 
equation (A1.6:1)  

   
   2 222 2

0 00 0
2 2 2 2

1 1

2 1 2
D

D
D e e e e

z h c c zh c cF N N
SB

z r r   
 

  
 

 (A1.6:2) 

dN dD

N D

0 5 10 15 20 25 z 10   z 1 10–1 10–2 10–310–410–5

dN dz

N z

dN dF

N F

1 10–1 10–2 10–3 10–4 10–5 10–6  F 
1 

10–3

10–6

10–9

1 

10–3

10–6

10–9



 

 

35

Compared to the surface brightness SB(do) of a reference object at distance d0 with zdo << 1, the 
observed bolometric surface brightness SB(D) is  
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or related to the K-corrected energy fluxes in multi-bandpass system with nominal filter wavelengths 
matched to the redshifted radiation [see Section A1.4] as 

     
0

1
1K D dSB SB z

   (A1.6:4) 

The predictions of equations (A1.6:3) and (A1.6:4) do not include the effects of possible evolutionary 
factors. 

In [37–40] Lubin and Sandage give a thorough review of the theoretical and observational aspects of 
the Tolman (1+z)–4 surface brightness prediction as a test of the FLRW expansion. They conclude that 
observations of the light curves from supernovas have confirmed the cosmological time dilation [41] as a 
unique proof of an expanding space. They also interpret the precise Planckian shape of the background 
radiation as a solid proof of the Tolman surface brightness prediction. However, the observed surface 
brightnesses of high z objects do not follow the Tolman (1+z)–4 prediction without assumptions of 
remarkable evolution in the luminosity and size of the objects. 

Galaxy surface brightness and size analysis [42] of HST WFPC2 data in the redshift range z = 0…4 
shows a qualitative fit of observed surface brightnesses to equation (A1.6:4). Also, the observed reduction 
in the half-light radius with an increasing redshift is in line with the Euclidean appearance of galaxy space 
in the DU framework. A detailed analysis of the fit of surface brightness observations to predictions 
(A1.6:3) and (A1.6:4) is left outside the scope of this paper.  

A1.7 The effects of the declining velocity of light 
As a consequence of the conservation of the zero-energy condition assumed, all velocities in space are 

related to the velocity of light determined by the expansion in the direction of the 4-radius. Emission of 
quanta from a supernova explosion occurs at a frequency proportional to the velocity of light at the time 
of the explosion. A sequence of waves from an explosion is redshifted and accordingly received 
lengthened in the same ratio as the wavelengths are lengthened, i.e. in direct proportion to (1+z). In the 
standard model, the lengthening is referred to as cosmological time dilation, in DU space it is a direct 
consequence of reduced velocity of light at the time the wave sequence is received. 

The declining rest energy of matter in DU space makes all atomic processes slow down with the 
expansion of space; ticking frequencies of atomic clocks and the rate of nuclear decay slow down in 
direct proportion to the decrease of the velocity of light. The present estimates for the oldest globular 
clusters, based on constant decay rates observed today, are in the range of 12 to 20 billion years [21]. 

The age of expanding DU space is T = (2/3)R4/c = (2/3)/H0 which means about 9.3 billion years for R4 
= 14 billion light years consistent with Hubble constant H0 = 70 [(km/s)/Mpc]. Linear age estimates up to 
14 billion years are reduced below the age of 9.3 billion years, Fig. A1.7-1. 

 
Figure A1.7-1. Accumulation of nuclear decay products at today’s decay rate (dashed line), and at a rate proportional to the velocity of 

light in DU space (solid curve). 
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A1.8 Microwave Background radiation in DU space 

The bolometric energy density of cosmic microwave background radiation, 4.210–14 [J/m3], 
corresponds, with a high accuracy, to the energy density within a closed blackbody source at 2.725 K. 
(Obs. As indicated by the Stefan-Boltzmann constant, the energy density within a blackbody source is 
higher than the integrated energy density of the flux radiated by the source by a factor of 4.) 
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from which 0 = 5.691010 Hz is obtained for T = 2.725 K.  
The rest energy calculated for the total mass in space is Erest = Mc2  21070 [J] corresponding to 

energy density Erest/(2 2R4
3) = 4.610–10 [J/m3] in DU space. Assuming that CMB is equal everywhere in 

space, the share of the CMB energy density of the total energy density in space is about 10–4. The total 
mass equivalence, and hence the ratio to the rest energy in space is conserved. The wavelength of 
radiation is redshifted as  
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where R4(e) is the 4-radius of space at the time of the emission of the CMB. The DU concept does not give 
a prediction for the value of the 4-radius R4(e) at the emission of the CMB — or exclude the possibility 
that the CMB were generated continuously by dark matter now at  2.725 K, Fig. A1.8-1. 

 
Figure A1.8-1. The CMB has the characteristics of a closed blackbody source. The number of quanta in radiation in spherically closed 

space is conserved. The wavelength, however, is increased in direct proportion to the expansion of the 4-radius. At present, the energy 
density of the 2.725 K background radiation is about 410–14 [J/m3] which is about 0.01 % of the energy density of all mass in space. 
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Appendix A2. Blackbody radiation 
 
By denoting  
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the energy density of a black body source expressed in terms of a wavelength differential d is 
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or in terms of a frequency differential d 
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The energy flux in terms of a wavelength differential d or a frequency differential d from a black 
body source is obtained by multiplying the energy densities in (A2:2) and (A2:3) by the Stefan-
Boltzmann factor c/4, and further divided by 4 for flux per steradian 
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for equation (A2:2), and  
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for equation (A2:3). Factor F0 in equations (A2:4) and (A2:5) is 
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The total energy flux from a black body source is obtained by integrating (A2:5) or (A2:6) for all 
wavelengths or frequencies. Substitution of x = 0/ in (A2:5) or x = v/0 in (A2:6) gives 
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where the numerical factor 4/15 comes from the definite integral, T is the temperature of the black body 
source, and  is the Stefan-Boltzmann constant  = 5.669310–8 [Wm–2K–4]. 
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The energy flux emitted in the wavelength or frequency range of a narrowband filter with relative 
width W = W = /  = W = / is obtained from equations (A2:4) and (A2:5), respectively, 
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or by relating the narrow band power density to the total bolometric flux density by expressing F0 in 
terms of Fbol (A2:7) as 
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The distribution function  4 1xD x e  obtains its maximum value when x = 3.9207 
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At a fixed relative bandwidth W the maximum flux occurs when the nominal frequency or wavelength 
of the filter fW = c/W is   fW/f0 = 0/W = 3.9207  

  max4 2,

15 W
m srbolW

F D W F  
 
 
 

     (A2:12) 

which relates the energy flux through an ideal narrow band filter matched to the bolometric energy flux of 
the radiation. The nominal frequency of the filter is matched to the maximum power throughput of 
blackbody radiation by setting fW = 3.9207 f0. 

When related to the frequency of the maximum power density per frequency fT [W/Hz/m2], and at the 
wavelength of the maximum power density per wavelength T [W/m/m2], the nominal frequency and 
wavelength for the maximum power density of blackbody radiation, fW and W, are, Fig A2-1 
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In terms of the energy per a wavelength or a cycle of electromagnetic radiation equations (A2:8) and 
(A2:9) can be written in form [see equation (A1.2:2) 
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where the intensity factor I = I = I is 
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Figure B1-1. The energy flux density of black body radiation (CMB) in terms of F() [Wm–2sr–1m–1] (A2:4), FW  [Wm–2sr–1] (A2:10), 

and F() [Wm–2sr–1Hz–1] (A2:5) in the frequency range from 100 MHz to 10 THz. The wavelength of the observed maximum power density 
in terms of F() [Wm–2sr–1Hz–1] is 1.87 mm.  In terms of F() [Wm–2sr–1m–1] the maximum occurs at wavelength 1.06 mm. The integrated 
total energy is equal for each flux density functions. Curve FW [Wm–2sr–1] shows the shape of the flux density function observed in narrow 
band filters with W = / = / . 

Equation (A2:14) shows the energy of a cycle of radiation at wavelength  receivable with a 
narrowband filter with relative width W = / = /. The blackbody source is characterized by 0 = 
hc/kT. In terms of mass equivalence, and by observing the different velocities c and c0 related to the DU 
concept, equation (A2:14) is written  
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where the mass equivalence of wavelength  is 
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